URETI Enabling Technology - Materials

Kick-off Meeting

Convened at:

NASA-Glenn Research Center

Glenn Daehn

Presenting for Ohio State Materials Team

Jim Williams-Mat. Sci & Engr.

Mike Mills-Mat Sci & Engr.

Somnath Ghosh-Mech. Engr.

Mark Walter-Mech. Engr.

11/18/02

Improved Performance and Reliability Materials

Tasks:

- * Materials Support for Performance and Life Methods Modeling
 - Properties: typicals and minimums
 - Materials Characterization
- * Higher Temperature Capability
 - Airfoil Materials
 - ▲ TBCs
 - ▲ Disk Materials (to be added later and/or funded elsewhere)
- * Low Emission Combustor Materials

Benefits of Further Improvements

Reliability

- * Longer range twin engine aircraft
 - ▲ ETOPS now standard extend ETOPS approval
 - ▲ Lower maintenance cost
- * Lower operating cost
- * Improved fleet management (UER ≈ 0.08%)
- Performance Lower Fuel Consumption (SFC)
- * Longer range
- * Lower operating cost

<u>Environmental</u>

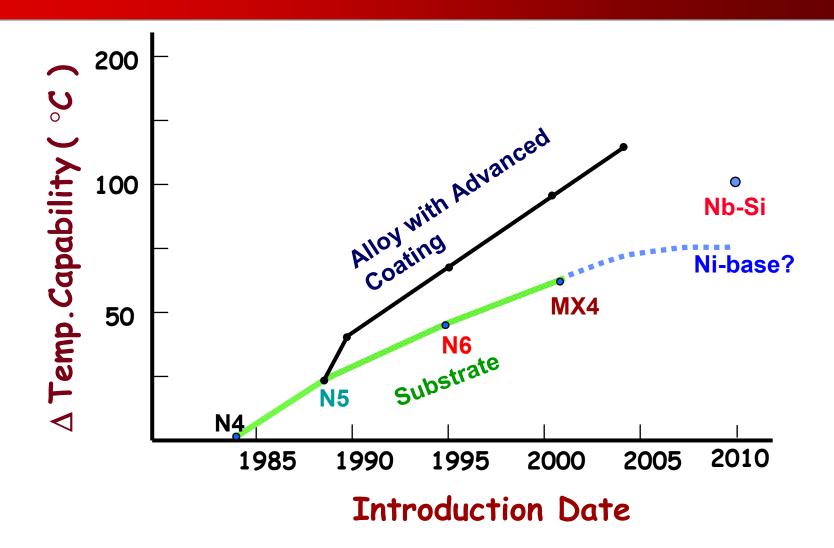
* Lower emissions and noise

Higher T's Require Improved Materials

Important "Rules of Thumb":

- 55 °C △T3 ≈ 4 5% SFC
- 55 °C △T3 ≈ 50 °C △T41
- * This requires better disk and turbine blade materials
- * Approximate cost of introducing new disk material is \$35M (this is a major decision)
- * Approximate cost of introducing new turbine blade material is \$10M (assumes minor castability changes)
- * If T_3 and T_{41} are high enough:
 - improved casing materials
 - improved compressor blades (cast Ni-base alloys?)

More fuel efficient engines come at a substantial cost



Airfoil Alloy Trendline

2.2.1.1 High Temperature Materials

2.2.1.1.2 Near-Net Shape Refractory Intermetallic Composites

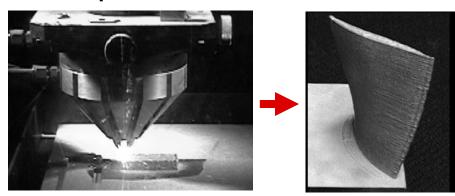
M. J. Mills, H. L. Fraser and J. C. Williams, MSE / OSU

Science & Technology Objective(s):

- Pursue a revolutionary advance in the fabrication and performance of turbine blades / static compressors
- Utilize the laser engineered net-shaping (LENS™) process to produce Nb-Ti-Si in-situ composites

Collaborations:

- Government NASA Glenn Research Center
- Industry GECRD (Bernard Belway), Optimec (R. Grylls), Reference Metals (T. Cadero)
- Synergism with existing programs Center for Accelerated Maturation of Materials (CAMM / OSU)


Proposed Approach:

- Using existing LENS[™] facility (OSU), produce deposits from elemental powder blends
- Analysis of microstructure/mechanical/oxidation properties
- Optimization of composition/microstructure/properties via combinatorial approaches

NASA Relevance/Impact:

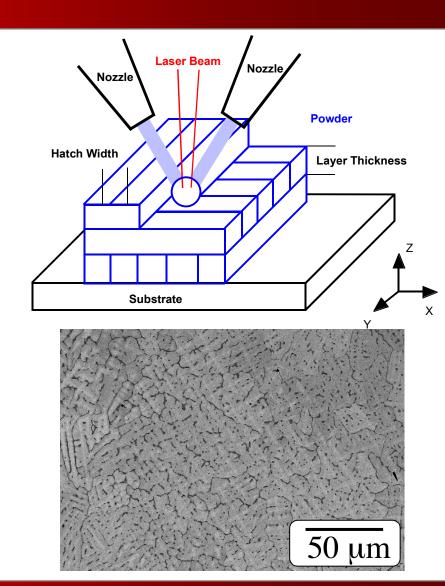
- Cost-effective route to improved high-temperature turbine engine components
- Complex, near-net shaped and functionally graded structures can be processed

LENSTM to Produce Novel Microstructures and Components:

Milestones/Accomplishments:

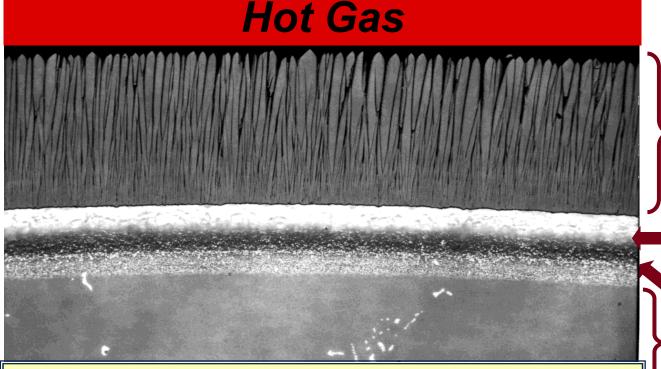
- Obtain suitable Nb powders from reference Metals or other vendors and perform trial depositions
- Produce wide range of compositions in Nb-Ti-Si system for fabrication and detailed analysis
- Microstructure characterization using SEM/TEM/FIB techniques.
- Mechanical testing and oxidation studies as a function of composition.
- Use generated database to target promising compositions with compositionally graded structures

for optimized performance.



2.2.1.1.2 Proposed Approach

- Use existing LENSTM facilities in MSE/OSU. In LENSTM, a focused laser light source is used as a heat source to melt a feed of metallic powder to build-up a solid, three-dimensional object
- Advantages include:
 - Complex, near-net shapes can be fabricated
 - Potentially attractive, non-equilibrium microstructures can be created
- Novel approach utilizes elemental powder feedstocks since they are:
 - Much cheaper than pre-alloyed powders
 - When phases formed have a negative enthalpy of mixing, can produce fine, dense and homogeneous microstructures
 - Graded compositions can be readily generated
- Already demonstrated to produce desirable microstructures in the Nb-Ti-Si-Cr alloy system



Thermal Barrier Coatings

Key TBC Features:

- · Columnar structure in top coat for spall resistance
- · Oxidation resistant and adherent bond coat
- Bond coat compatible with alloy substrate

Bond coat

Ceramic

top coat

Diffusion zone

Turbine blade

2,2,1,1 High Temperature Materials

2.2.1.1.1 Thermal Barrier Coatings (TBCs)

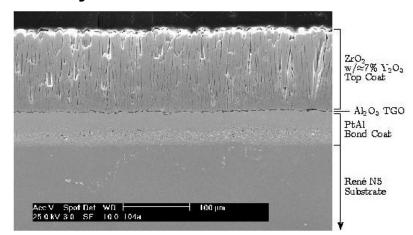
M.E. Walter and S. Ghosh, The Ohio State University

Science & Technology Objective(s):

- To develop a comprehensive, systems-based model for thermal and environmental barrier coatings.
- To enable microstructural and materials design for optimized performance and life of TBCs

Collaborations:

- Government NASA GRC: Environmental Durability Branch
- URETI integration with turbine blade materials development
- Industry GE Aircraft Engines
- Synergism with an existing NSF (experimental) program


Proposed Approach:

- Start with EB-PVD coatings with PtAl Bond coats and superalloy substrates
- Compare simulations to existing data.
- Simulate top coat materials with varying degrees of compliance CMAS depositions.

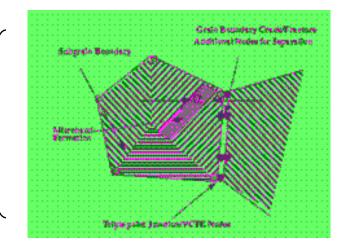
NASA Relevance/Impact:

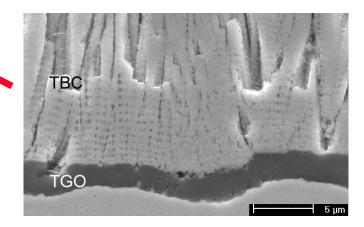
Improved TBCs are an integral part of higher T₄₁

The Cross-Section of a State-of-the-Art TBC System:

Milestones/Accomplishments:

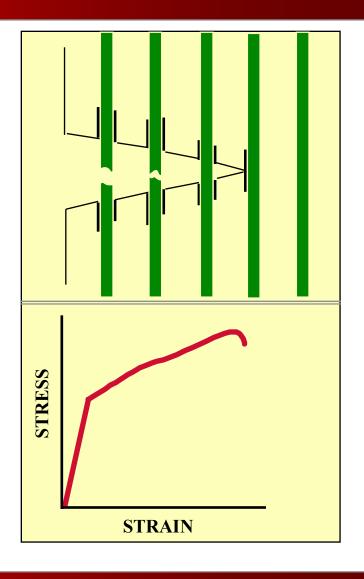
- Finite element framework oxide growth Incorporation of wrinkling of the bond coat/TGO/top coat interface
- Include finite elements to enable damage propagation.
- Study top coat sintering and CMAS deposits.
- Compare simulations to experiments.





2.2.1.1.1 Proposed Approach

- Begin with models of EB-PVD coatings with PtAl Bond coats and superalloy substrates which incorporate phase evolution, thermally growing oxide, and damage evolution.
- Compare simulations of isothermal and thermocylic loading to existing experimental data.
- Simulations of top coat materials with varying degrees of compliance and accounting for sintering and CMAS depositions.
- Investigate alternative top coat materials and structures through materials design simulations.
- To design an optimal set of residual stresses and crack compliances for improved coating performance and life.



Desirable CMC Characteristics

- o High Temperature Capability
 - > Environmentally Stable Constituents
- o Thermal Shock Resistance
 - High Thermal Conductivity
 - High Matrix Strength
- o Damage Tolerance
 - > Continuous Fiber Reinforcement
 - > Retention of Fiber Dominated Behavior
- o Affordable
 - > Multiple sources
 - > Common fiber type?
- o Good Shape Forming Capability
- o Environmental Durability

No affordable production sources today

Demonstrator CMC Combustor Inner Liner

- Successfully Completed Rig Testing With SiC/SiC CMC Inner Liner
- Post-Test NDE Showed No Signs of Material Degradation
- Rig Test Conditions;
 - · 15 Hours at F110 Conditions
 - · 40+ Hours at IHPTET Conditions
- Next Step-ATEGG Core Engine Test Initiated

2.2.1.1 High Temperature Materials

2.2.1.1.3 Co-Continuous Composites

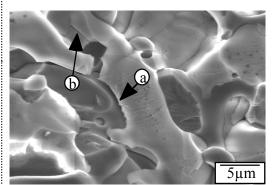
Glenn Daehn, & Jim Williams, The Ohio State University

Science & Technology Objective(s):

 Develop new class of high temperature ceramicmetal composites. Will posses: low density, good toughness, high temperature strength, low processing cost.

Collaborations:

- NASA- Glenn (background/constraints re/CMC's)
- GEAE (background/constraints re/CMC's)
- BFD, Inc. (Processing technology)


Proposed Approach:

- Visit CMC experts at NASA-Glenn, GEAE and WPAFB - detail project design and ensure relevance.
- Design new desired microstructure involving continuous ceramic and metal phases
- Produce materials and measure properties

NASA Relevance/Impact:

 Conventional superalloys are reaching fundamental performance limits. New materials proposed that can provide higher operating temp., low density, without poor toughness and high cost of similar materials.

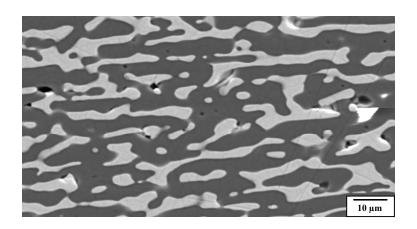
Example- Fracture Surface, Ni Al - Al₂O₃ co-continuous composite:

Lighter phase is NiAl. Composite tougher than constituents. De-bonding (a) and deflection (b) shown here.

Milestones/Accomplishments:

- CMC state of the art report and detailed project objectives (after consultation with collaborators)
- Microstructural objectives and processing plan for new materials.
- Demonstrate production of new materials.
- · Measure and report properties.

2.2.1.1.3 Proposed Approach - Reactive Infiltration


Established Processing Scheme SiO₂ shaped precursor is immersed in liquid Al at 1100° C.

As 2 moles of Al₂O₃ are smaller than 3 moles of SiO₂, porous alumina is created and infiltrated!

Process is net-shape.

Enhancements in this program

- Use high melting metal or intermetallic to fill pores in ceramic instead of aluminum.
- Add continuous ceramic fibers as well.

Example, NiAl Al₂O₃ composite. Dark phase is ceramic.

Summary and Take-aways

- Substantial progress in aero engine performance in past 25 years
 - ▲ Materials have played a major role in this
- * Further improvements will require major materials investment in Ni-base disks and blades
 - ▲ Continued improvements in Ni-base turbine blades open to question
- * Lower emissions combustors require better liner materials
 - ▲ CMCs are the best bet
- * Opportunities in other lighter weight and higher temperature materials await market pull and industrial base investment
 - ▲ Should do enabling work now

Summary of Progress - past 25 years

- * Thrust:weight has increased ~2.5X
 - → Higher operating temperatures
 - Lighter weight structures and materials
- * Time on wing has increased ~40X
 - Reduced inspections
 - ▲ Improved combustor pattern factors
 - ▲ Improved hot section materials
- * Fewer delays, cancellations, unscheduled removals and in-flight shut downs
 - ▲ Broad use of FADEC
 - ▲ Better bearings
 - ▲ Improved controls and accessories
 - ▲ More EGT margin
 - ▲ ETOPS now routine

Disk Task to be funded elsewhere

Funding Possibilities:

- *FAA & additional funding
- *Ohio/NASA/USAF Propulsion 21
- *GE company funded program

Advanced Disk Alloy Goals

- Density < Predecessor (.297 vs. .302)
- Tensile (UTS) \cong same
- Creep/Rupture (+30°C improvement)

Lighter Weight

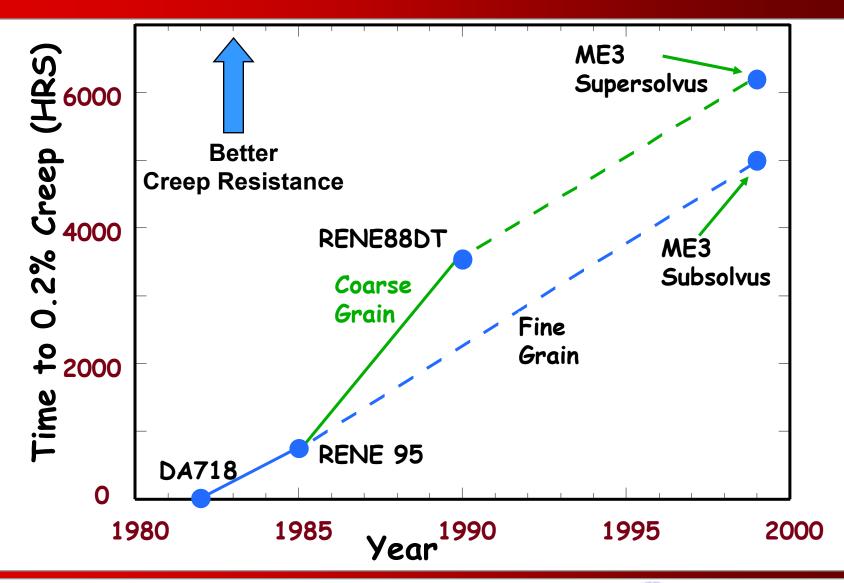
- LCF \cong same until 650°C; Superior >650°C
- · SPLCF > same

Enables Higher T3

- Cyclic FCGR \cong same
- Dwell FCGR 50X slower (+80°C Capability)

Superior Probabalistic Life

Improved stability alloy enables high temperatures & long hold times use while maintaining lower temperature properties



Advanced Disk Alloy Capability

